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For a linear subspace M of a normed linear space X and x E X, let PM(x) be the
set of all best approximations to x from M. We study the subspaces M such that
PM is uniformly Hausdorff strongly unique. The 1t-ball property implies uniform
Hausdorff strong uniqueness, but the converse is false. We obtain that, if PM is
uniformly Hausdorff strongly unique, then PM is Lipschitz continuous. When M is
a hyperplane, PM is Hausdorff strongly unique for some x E X\M if and only if PM

is uniformly Hausdorff strongly unique. In C[a, b], PM is uniformly Hausdorff
strongly unique if and only if M is one dimensional and Chebyshev. © 1989

Academic Press, Inc

Let X be a normed linear space, and for x E X and r ~ 0 denote

B(x, r)=Bx(x, r)= {YEX: Ily-zll ~r}.

For a nonempty subset M of X and each x E X we denote by PM(X) the
set of all best approximations to x from M, i.e.,

PM(x) = {moEM: Ilx-moll =d(x, M)}.

The set M is called:

(1) proximinal in X if, for each XEX, PM(x) is nonempty.

(2) Chebyshev in X if, for each x E X, PM(X) is a singleton.

Throughout this article, unless otherwise specified, M will denote a linear
(not necessarily closed) subspace of X.

For x E X and B~ 0, we denote by P':!Ax) the set of all B-approximations
to x from M, i.e.,

PM(x) = {moEM: IIx-moll ~d(x, M)+s}.

Notice that P~Ax)= PM(X). Clearly, for each B~ 0, we have

PM(x) = M (\ B(x, d(x, M) + B)

and for each B > 0, PM(x) #- 0.
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For a set A c X and e~ 0, the closure of the e-neighborhood of A,
denoted by A., is

A,=B,(A)= {XEX: d(x, A)~e}.

Using the convention that d(x, <p) = 00, it follows that, for A = <p, we have
As = <p for each (finite) e~ 0.

Many mathematicians have studied strong uniqueness when M is
Chebyshev. W. Li [6] defined and studied Hausdorff strong uniqueness in
C(T) when M is proximinal. Here we will give the definition of Hausdorff
strong uniqueness and define uniform Hausdorff strong uniqueness for any
normed space X. In this article we give a characterization of (uniform)
Hausdorff strong uniqueness. We show that the l!-ball property is strictly
stronger than uniform Hausdorff strong uniqueness. But if PM is uniformly
Hausdorff strongly unique then PM is Lipschitz continuous. In C[a, b], we
characterize a subspace whose metric projection is uniformly Hausdorff
strongly unique. Finally we show that for a hyperplane M, PM is Hausdorff
strongly unique for some x E X\M if and only if PM is uniformly Hausdorff
strongly unique.

DEFINITION 1 [6]. Let M be a proximinal closed subspace of X and let
x E X. The set PM(X) is said to be Hausdorff strongly unique if

. {llx-ml[-d(X,M) }
r(x):=mf d(m,PM(x)) :mEM\PM(x) >0.

If PM(X) is Hausdorff strongly unique, it follows that

[[x-mil ~d(x, M)+r(x) d(m, PM(x))

(1.1 )

(1.2)

for each mE M. In addition, r = r(x) is the largest constant for which (1.2)
holds for each m E M.

Notice that if M is Chebyshev, then this condition reduces to the well­
known condition that P M(X) is strongly unique;

for each m E M.

LEMMA 2. Let M be a proximinal subspace of a normed linear space X.
Then

(1) for any x, y E X, [[x - yll ~ d(x, M) + d(y, PM(X)).

(2) for each XEX, Ilx-mll ~d(x, M)+d(m, PM(x)) for any mEM.
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(3) if PM(X) is Hausdorff strongly unique, then r(x) ~ 1.

(4) PM(x) is Hausdorff strongly unique with r(x) = 1 if and only if

Ilx-mll =d(x, M)+d(m, PM(x))

for each mE M.

Proof (1) Let x, y E X be given. Then for each m E PM(x),

Ilx-yll ~ Ilx-mll + Ilm-YII =d(x, M)+ Ilm- yll·

Thus IIx - yll ~ d(x, M) + d(y, PM(X)).

(2) Takey=min(l).

(3) Assume that r(x» 1 and m¢:PM(x). By (2),

IIx - mil"?; d(x, M) + r(x) d(m, PM(X))

>d(x, M)+d(m, PM(x))

"?; IIx-mll·

This is a contradiction. Thus r(x) ~ 1.

(4) If PM(X) is Hausdorff strongly unique with r(x) = 1, then

Ilx-mll "?;d(x, M)+d(m, PM(x))

for each mE M. But (2) implies the reverse inequality. Thus
IIx-mll =d(x, M)+d(m, PM(x)) for each mEM.

Conversely, if Ilx-mll=d(x,M)+d(m,PM(x)) for each mEM, then
PM(X) is Hausdorff strongly unique with r(x)"?; 1. By (3), r(x) = 1.

THEOREM 3. Let M be a proximinal subspace of a normed linear space
X, x E X, and r > O. Then the following statements are equivalent:

(1) P M(x) is Hausdorff strongly unique with r ~ r(x);

(2) P~(x)cPM(x)"/rfor each 8"?;O.

Proof (1) => (2) Suppose (1) holds. Then IIx-mll"?; d(x, M) +
rd(m, PM(x)) for each mEM. Let 8"?;O and mEP~(x). Then we have

rd(m, PM(X)) + d(x, M) ~ IIx - mil ~ d(x, M) + 8.

So d(m'PM(x))~8/r. Thus mEPM(X)"/r' Therefore, P~(X)cPM(X)"/r for
each 8"?; O.
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(2) ~ (1) Suppose (2) holds. Let mE M and e = Ilx - mll- d(x, M).
Then e~O and mEPk(x), so mEPM(X)e/r' Thus

e 1
d(m, P M(X))~ -=- (1Ix-mll-d(x, M)),

r r

i.e.,

rd(m, P M(X)) + d(x, M) ~ Ilx - mil

for each mE M. Therefore PM(X) is Hausdorff strongly umque with
r ~ r(x).

DEFINITION 4. Let M be a proximinal subspace of X. The metric projec­
tion PM is said to be uniformly Hausdorff strongly unique if

r(M) := inf{r(x): x E X} > 0.

Note that r(M) is the largest number so that

Ilx - mil ~ d(x, M) + r(M) d(m, P M(X)) (3.1 )

for each x E X and mE M. Moreover, if r(M) = 1, then r(x) = 1 for all x EX.

EXAMPLE 5. [There is a proximinal subspace M which is not Chebyshev
so that PM is uniformly Hausdorff strongly unique.] Let M = span{(1, O)}
be a subspace of X = [R2 with the norm: Ilxll = II(x j , x2)11 = max{ lXII, Ix21}.
Then M is proximinal (not Chebyshev) and PM is uniformly Hausdorff
strongly unique with r(M) = 1. Clearly for each x = (x I' X2) E X,

and d(x, M) = Ix21.
Now we want to prove that PM is uniformly Hausdorff strongly unique

with r(M)=1. Let x=(X j ,X2)EX and m=(a,O)EM be fixed. Then
Ilx-mll =max{lxj-al, IX21}.

If [Ix-mil = jx21, then mEPM(x) so d(m, PM(x))=O and d(x, M)= IX21.
Thus Ilx - mil = d(x, M) + d(m, P M(X)),

If Ilx-mll=lxj-al, then m¢PM(x), so either a>x j +lx21 or
a<x j -Ix21. If a>xI + IX21, then d(m, P M(x))=a-x j -lx 2 1, so
d(x, M) + d(m, PM(x)) = IX21 + a - Xj - Ix21 = a - XI = Ilx - mil. If
a<x l -lx21, then d(m, P M(x))=X j -!x21-a, so d(x, M) + d(m, PM(x))
= Ix21 +x l -lx21-a=xl -a= Ilx-mll·

Therefore for each x E X, II x - mil = d(x, M) + d(m, P M(x)) for any
mE M, Thus PM is uniformly Hausdorff strongly unique with r(M) = 1.
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As an immediate consequence of Theorem 3, we obtain

COROLLARY 6. Let M be a proximinal subspace ofa normed linear space
X and 0 < r. The following statements are equivalent.

(1) PM is uniformly Hausdorff strongly unique with r ~ r(M);

(2) For each x E X,

for each e~ o.
When M is proximinal in X, PM is uniformly Hausdorff strongly unique

for PM with r(M) = 1 is equivalent to what G. Godini [5J called property
(*) of M.

DEFINITION 7 [5]. A subspace M of a normed linear space X has
property (*) in X if for each x E X with PM(X) # 0 and each mE M we
have that

d(m, PM(X)) = Ilx-mll-d(x, M). (7.1 )

DEFINITION 8 [11]. A subspace M of a normed linear space X has the
1!-ball property in X if the conditions m E M, x E X, r I ~ 0 (i = 1, 2),
M n B(x, r2) # 0, and Ilx - mil < r1 + r2 imply that

M n B(m, rd n B(x, r2) # 0.

THEOREM 9. Let M be a proximinal subspace ofa normed linear space X.
The following statements are equivalent.

(1 ) PM is uniformly Hausdorff strongly unique with r(M) = 1;

(2) M has property (*) in X;

(3) For each XEX.

for any e~O;

(4) M has the 1!-ball property in X.

Proof The equivalence of statements (2), (3), and (4) was proven by
G. Godini [5].

(1) ¢> (2) Clearly, PM is uniformly Hausdorff strongly unique with
r(M) = 1 if and only if r(x)= 1 for each XEX. By (4) of Lemma 2, this is
equivalent to M having property (*).
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Recall [8] that a subspace M is a "semi-L-summand" in X if M is
Chebyshev and for each x E X

COROLLARY 10. If M is a semi-L-summand in X, then PM is uniformly
Hausdorff strongly unique with r(M) = 1.

Proof Since PM is "additive modulo M" (i.e., PM(x +m) = PM(x) +m
for each x E X and mE M), by replacing x by x - m in the definition of
semi-L-summand we obtain that

Ilx-mll = IIPM(x-m)11 + Ilx-m-PM(x-m)11

= IIPM(x)-mll + Ilx-PM(x)11

=d(m, PM(x)) + d(x, M)

for each mE M. Thus M has property (*). By Theorem 9, the result follows.

Remark. By Theorem 9, the 1!-ball property implies uniformly
Hausdorff strongly unique. But the converse is not true in general.

EXAMPLE 11. [There is a subspace M for which PM is uniformly
Hausdorff strongly unique with 0 < r(M) < 1 but M fails the 1!-ball
property.] In C[O, 1], let O<r< 1 and M=span{m} where

mo(t)=(r-1)t+1

for any t E [0, 1] and 0 < r < 1. Clearly limo II = 1. Then M is a Chebyshev
subspace of C[O, 1]. Fix any f E C[O, 1]. By the alternation theorem, there
exist (0' (1 E [0, 1] such that

f(to) - <lfmo(tO) = Ilf- <lfmo II

f(t d - <lfmO(td = - Ilf- <lfmo II

or

f(to) - <lfmO(tO) = - Ilf- <lfmO II

f(td -<lfmo(td = Ilf- <lfmo II,

where PM(f) = {<lfmO}' We may assume

f(to) - <lfmO(tO) = Ilf- <lfmo II
f(t 1 ) - <lfmo(td = -Ilf- <lImo II·
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Note that r=min{lmo(t)/: tE [0, I]}. Let rxmoEM be given. If rxf~rx, then

I/I-rxmoll = /I/-rxfmo+ (rxf-rx) moll

~ I/(to) -rxfmo(to) + (rxf-rx) mo(to)1

~ III-rxfmo II + Irxf-rx I min Imo(t)1
O~t~l

III-rxmo II = III-rxfmo + (rxf-rx) mo II

~ /I(td -rxfmO(tl) + (rxf-rx) mo(tdl

~ II/-rxfmoll + Irxf-rxl min /mo(t)/
O~t~l

r
= II/-rxfmoll + Ilmoll IIrxfmo-rxmoll.

Since limo II = 1 and PM(f) = {rxfmo },

III- m II ~ d(f, M) + rd(m, PM(f))

for any mE M. Since I was arbitrary, PM is uniformly Hausdorff strongly
unique and r ~ r(M). Now we want to prove that r is the largest number
and hence r = r(M). Define I(t) = (1 + r)/2 for any t E [0, 1]. Then

since PM(f) = {mo}. Thus

11/- !mo II = d(f, M) + rd(!mo, PM(f))·

Therefore r is the largest number. We have shown that PM is uniform
Hausdorff strongly unique with 0< r(M) < 1. But in [10] we observed that
the only finite-dimensional subspace of C[O, 1] which has the 1!-ball
property is M 1 = span{I}. Thus M fails the 1!-ball property.

Thus, in general, uniformly Hausdorff strongly unique does not imply
the 1!-ball property. So uniform Hausdorff strong uniqueness is strictly
weaker than the 1!-ball property. But we still have the following property:
If PM is uniformly Hausdorff strongly unique, then PM is Lipschitz con­
tinuous.
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Let X be a normed linear space and H(X) denote the family of all non­
empty closed, bounded, convex subsets of X.

Define h: H(X) x H(X) -+ IR by

h(A, B) = sup d(a, B),
aEA

where d(a, B)=infbEB Iia-bil. The Hausdorffmetric on H(X) is defined by

H(A, B) = max{h(A, B), h(B, A)}.

Recall that PM is pointwise Lipschitz u.H.s.c. at Xo if there exists Il xo > 0
such that for each x E X,

THEOREM 12. Let M be a subspace of a normed linear space X. If PM(X)
is Hausdorff strongly unique, then PM is pointwise Lipschitz u.H.s.c. at x
with constant 2jr(x).

Proof Suppose that Ilx - mil ~ d(x, M) + r(x) d(m, PM(X)) for any
mEM, Let yEX and mEPM(y) be given. Then

r(x) d(m, PM(X)) ~ Ilx - mll- d(x, M)

~ Ilx - yll + Ily - mll- d(x, M)

= Ilx - yll +d(y, M) - d(x, M)

~21Ix-YII.

Thus h(PM(y),PM(x))~(2jr(x))llx-YII. Therefore PM is pointwise
Lipschitz u.H.s.c. at x with constant 2jr(x).

DEFINITION 13. Let M be a proximinal subspace of a normed linear
space X. PM is said to be Lipschitz continuous with constant Il if

H(P M(X), PM(y)) ~ Illix - yll

for any x, y E X.

THEOREM 14. Let M be a proximinal subspace of X. If PM is uniformly
Hausdorff strongly unique, then PM is Lipschitz continuous with Lipschitz
constant 2jr(M).

Proof Let r = r(M). Since PM is uniformly strongly unique, for each
XEX and mEM.

IIx - mil ~ d(x, M) + rd(m, PM(X)).
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Let x, yEX and mEPM(y). Then

rd(m, PM(X))~ Ilx-mll-d(x, M)

~ Ilx-yll + Ily-mll-d(x, M)

= Ilx - YII +d(y, M) - d(x, M)

~21Ix-yll·

Thus d(m'PM(x))~(2/r) Ilx-yll. Since m was arbitrary in PM(y),
h(PM(y), MM(X))~(2/r)llx-yll· By symmetry, h(PM(x), PM(Y))~

(2/r)llx-YII· Therefore H(PM(x),PM(Y))~(2/r)llx-yll, and PM is
Lipschitz continuous with Lipschitz constant 2/r.

THEOREM 15. Let M be a finite-dimensional subspace of C[a, b]. The
following statements are equivalent.

(1) PM is uniformly Hausdorff strongly unique;

(2) M is one dimensional and Chebyshev.

Proof (1) => (2) Suppose (1) holds. By Theorem 14, PM is Lipschitz
continuous. Since [a, b] is a connected compact Hausdorff space, M is
Chebyshev [2]. By a result of Cline [3], M is one dimensional. Thus (2)
holds.

(2) => (1) Suppose M is one dimensional and Chebyshev. Then there
exists Xl E C[a, b] such that Xl has no zero and M = span {x 1 }. By the
same argument to Example 11, we can prove that PM is uniformly
Hausdorff strongly unique.

Remark. In C(T), where T is a connected compact Hausdorff space, the
above theorem is also true. In fact, (1) => (2) is the same proof as the above
and by a Theorem in [9] and the same argument to Example 11, (2) => (1).
(2)=>(1) also follows from the result ofWu Li [7].

In general, the converse of Theorem 14 is not true. We have an example.

EXAMPLE 16. [PM is Lipschitz continuous, but PM is not uniformly
Hausdorff strongly unique.] Let X = 1R 2 have the norm

IIxll = II(x(I), x(2))11 = {lx(1 W + Ix(2W} 1/2.

Let M = span{(1, 0) }. Then clearly M is Chebyshev and PM is Lipschitz
continuous, i.e., IIPM(x)-PM(y)11 ~ IIx- yll. Suppose that PM is uniformly
Hausdorff strongly unique and let r = r(M). Let x = (0, 1) so PM(X) = (0, 0)
and d(x, M) = 1. If r = 1, let m = (1, 0). Then

d(x, M) + rd(m, P M(x)) = 2 > II x - mil
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which contradicts uniform Hausdorff strong uniqueness. If 0 < r < 1, let
IX = r/(1- r2

) and m = (IX, 0). Then

d(x, M) + rd(m, PM(X» = 1+ r j1"+"? < j1"+"? = Ilx - mil

which also contradicts uniform Hausdorff strong uniqueness. Thus PM is
not uniformly Hausdorff strongly unique.

COROLLARY 17 [11]. Let M be a proximinal subspace of a Banach space X.
If M has the 1!-ball property in X, then PM is Lipschitz continuous with
Lipschitz constant 2.

Proof By Theorem 9, PM is uniformly Hausdorff strongly unique with
r(M) = 1. The result now follows by Theorem 14.

THEOREM 18 [4]. Let M be a finite-dimensional subspace of X. If PM is
Lipschitz continuous, then PM has a Lipschitz continuous selection which is
homogeneous and additive modulo M.

COROLLARY 19. Let M be an n-dimensional subspace of X. If PM is
uniformly Hausdorff strongly unique, then PM has a Lipschitz continuous
selection which is homogeneous and additive modulo M. Moreover, if M has
the 1!-ball property in X, then PM has a Lipschitz continuous selection which
is homogeneous and additive modulo M.

Proof If M has the 1!-ball property, then by Theorem 9, PM is
uniformly Hausdorff strongly unique. By Theorem 14, such maps are
Lipschitz continuous. The result now follows by Theorem 18.

Remark. M. W. Bartelt and H. W. McLaughlin [1] proved that if the
best approximation to x from M is strongly unique, then so is the best
approximation to every element of span{M, x}. This result can be
generalized.

THEOREM 20. Let M be a subspace of X and x E X\M. If P M(X) is
Hausdorff strongly unique, then PM is uniformly Hausdorff strongly unique
in span {M, x}.

Proof Suppose PM(X) is Hausdorff strongly unique, i.e., there exists
r>O such that Ilx-mll ?;d(x, M)+rd(m, PM(x» for any mEM. The case
M = {O} is trivial. Assume that M #- {O}. It suffices to show that for any
scalar a and mo E M,
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for any mE M. Let ax +moE span {M, x}. If a =0, it is obvious. If a#- 0,
then for all m E M,

Ilax+mo-mll = lalllx-~ (m-mo)11

~ lal{d(x, M) +rdG (m -mo), PM(X»)}

=d(ax+mo, M)+rd(m-mo, PM(ax»

= d(ax + mo, M) + rd(m, PM(ax + mo».

Since ax+mo was arbitrary in span{M, x}, PM is uniformly Hausdorff
strongly unique.

COROLLARY 21. Let M be a hyperplane in X.

The following statements are equivalent.,
(1) There exists xEX\M such that PM(x) is Hausdorff strongly

unique;

(2) PM is uniformly Hausdorff strongly unique in X.

Proof (2) => (1) is obvious.

(2) => (1 ) Suppose that (1) holds. By Theorem 20, PM is uniformly
Hausdorff strongly unique in span{M, x}. Since span{M, x} = X, PM is
uniformly Hausdorff strongly unique in X.
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