Uniform Hausdorff Strong Uniqueness

SUNG HO PARK*

Department of Mathematics, The Pennsylvania State University University Park, Pennsylvania 16802, U.S.A.

Communicated by Frank Deutsch

Received August 14, 1987; revised December 10, 1987

For a linear subspace M of a normed linear space X and $x \in X$, let $P_M(x)$ be the set of all best approximations to x from M. We study the subspaces M such that P_M is uniformly Hausdorff strongly unique. The $1\frac{1}{2}$ -ball property implies uniform Hausdorff strong uniqueness, but the converse is false. We obtain that, if P_M is uniformly Hausdorff strongly unique, then P_M is Lipschitz continuous. When M is a hyperplane, P_M is Hausdorff strongly unique for some $x \in X \setminus M$ if and only if P_M is uniformly Hausdorff strongly unique. In C[a, b], P_M is uniformly Hausdorff strongly unique. Strongly unique if and only if M is one dimensional and Chebyshev. © 1989 Academic Press, Inc

Let X be a normed linear space, and for $x \in X$ and $r \ge 0$ denote

 $B(x, r) = B_X(x, r) = \{ y \in X : \| y - z \| \le r \}.$

For a nonempty subset M of X and each $x \in X$ we denote by $P_M(x)$ the set of all best approximations to x from M, i.e.,

$$P_{M}(x) = \{m_{0} \in M : ||x - m_{0}|| = d(x, M)\}.$$

The set M is called:

- (1) proximinal in X if, for each $x \in X$, $P_M(x)$ is nonempty.
- (2) Chebyshev in X if, for each $x \in X$, $P_M(x)$ is a singleton.

Throughout this article, unless otherwise specified, M will denote a linear (not necessarily closed) subspace of X.

For $x \in X$ and $\varepsilon \ge 0$, we denote by $P_M^{\varepsilon}(x)$ the set of all ε -approximations to x from M, i.e.,

$$P_{M}^{\varepsilon}(x) = \{m_{0} \in M : ||x - m_{0}|| \leq d(x, M) + \varepsilon\}.$$

Notice that $P_M^0(x) = P_M(x)$. Clearly, for each $\varepsilon \ge 0$, we have

$$P^{\varepsilon}_{M}(x) = M \cap B(x, d(x, M) + \varepsilon)$$

and for each $\varepsilon > 0$, $P^{\varepsilon}_{M}(x) \neq \emptyset$.

* Present address: Department of Mathematics, Sogang University, CPO 1142, Seoul 121-742, Korea.

For a set $A \subset X$ and $\varepsilon \ge 0$, the closure of the ε -neighborhood of A, denoted by A_{ε} , is

$$A_{\varepsilon} = \overline{B_{\varepsilon}(A)} = \{ x \in X : d(x, A) \leq \varepsilon \}.$$

Using the convention that $d(x, \phi) = \infty$, it follows that, for $A = \phi$, we have $A_{\varepsilon} = \phi$ for each (finite) $\varepsilon \ge 0$.

Many mathematicians have studied strong uniqueness when M is Chebyshev. W. Li [6] defined and studied Hausdorff strong uniqueness in C(T) when M is proximinal. Here we will give the definition of Hausdorff strong uniqueness and define uniform Hausdorff strong uniqueness for any normed space X. In this article we give a characterization of (uniform) Hausdorff strong uniqueness. We show that the $1\frac{1}{2}$ -ball property is strictly stronger than uniform Hausdorff strong uniqueness. But if P_M is uniformly Hausdorff strongly unique then P_M is Lipschitz continuous. In C[a, b], we characterize a subspace whose metric projection is uniformly Hausdorff strongly unique. Finally we show that for a hyperplane M, P_M is Hausdorff strongly unique for some $x \in X \setminus M$ if and only if P_M is uniformly Hausdorff strongly unique.

DEFINITION 1 [6]. Let M be a proximinal closed subspace of X and let $x \in X$. The set $P_M(x)$ is said to be Hausdorff strongly unique if

$$r(x) := \inf \left\{ \frac{\|x - m\| - d(x, M)}{d(m, P_M(x))} : m \in M \setminus P_M(x) \right\} > 0.$$
(1.1)

If $P_{\mathcal{M}}(x)$ is Hausdorff strongly unique, it follows that

$$\|x - m\| \ge d(x, M) + r(x) d(m, P_M(x))$$
(1.2)

for each $m \in M$. In addition, r = r(x) is the largest constant for which (1.2) holds for each $m \in M$.

Notice that if M is Chebyshev, then this condition reduces to the wellknown condition that $P_M(x)$ is strongly unique;

 $||x - m|| \ge ||x - P_M(x)|| + r(x)||m - P_M(x)||,$

for each $m \in M$.

LEMMA 2. Let M be a proximinal subspace of a normed linear space X. Then

- (1) for any $x, y \in X$, $||x y|| \le d(x, M) + d(y, P_M(x))$.
- (2) for each $x \in X$, $||x m|| \leq d(x, M) + d(m, P_M(x))$ for any $m \in M$.

640/58/1-6

SUNG HO PARK

- (3) if $P_M(x)$ is Hausdorff strongly unique, then $r(x) \leq 1$.
- (4) $P_M(x)$ is Hausdorff strongly unique with r(x) = 1 if and only if

 $||x - m|| = d(x, M) + d(m, P_M(x))$

for each $m \in M$.

Proof. (1) Let
$$x, y \in X$$
 be given. Then for each $m \in P_M(x)$,
 $||x - y|| \le ||x - m|| + ||m - y|| = d(x, M) + ||m - y||.$

Thus $||x - y|| \le d(x, M) + d(y, P_M(x)).$

- (2) Take y = m in (1).
- (3) Assume that r(x) > 1 and $m \notin P_M(x)$. By (2),

$$\|x - m\| \ge d(x, M) + r(x) d(m, P_M(x))$$

> $d(x, M) + d(m, P_M(x))$
$$\ge \|x - m\|.$$

This is a contradiction. Thus $r(x) \leq 1$.

(4) If $P_M(x)$ is Hausdorff strongly unique with r(x) = 1, then

$$\|x - m\| \ge d(x, M) + d(m, P_M(x))$$

for each $m \in M$. But (2) implies the reverse inequality. Thus $||x - m|| = d(x, M) + d(m, P_M(x))$ for each $m \in M$.

Conversely, if $||x - m|| = d(x, M) + d(m, P_M(x))$ for each $m \in M$, then $P_M(x)$ is Hausdorff strongly unique with $r(x) \ge 1$. By (3), r(x) = 1.

THEOREM 3. Let M be a proximinal subspace of a normed linear space X, $x \in X$, and r > 0. Then the following statements are equivalent:

- (1) $P_M(x)$ is Hausdorff strongly unique with $r \leq r(x)$;
- (2) $P_{M}^{\varepsilon}(x) \subset P_{M}(x)_{\varepsilon/r}$ for each $\varepsilon \geq 0$.

Proof. (1) \Rightarrow (2) Suppose (1) holds. Then $||x - m|| \ge d(x, M) + rd(m, P_M(x))$ for each $m \in M$. Let $\varepsilon \ge 0$ and $m \in P^{\varepsilon}_M(x)$. Then we have

$$rd(m, P_M(x)) + d(x, M) \leq ||x - m|| \leq d(x, M) + \varepsilon.$$

So $d(m, P_M(x)) \leq \varepsilon/r$. Thus $m \in P_M(x)_{\varepsilon/r}$. Therefore, $P_M^{\varepsilon}(x) \subset P_M(x)_{\varepsilon/r}$ for each $\varepsilon \geq 0$.

(2) \Rightarrow (1) Suppose (2) holds. Let $m \in M$ and $\varepsilon = ||x - m|| - d(x, M)$. Then $\varepsilon \ge 0$ and $m \in P^{\varepsilon}_{M}(x)$, so $m \in P_{M}(x)_{\varepsilon/r}$. Thus

$$d(m, P_M(x)) \leq \frac{\varepsilon}{r} = \frac{1}{r} (\|x - m\| - d(x, M)),$$

i.e.,

$$rd(m, P_M(x)) + d(x, M) \leq ||x - m||$$

for each $m \in M$. Therefore $P_M(x)$ is Hausdorff strongly unique with $r \leq r(x)$.

DEFINITION 4. Let M be a proximinal subspace of X. The metric projection P_M is said to be uniformly Hausdorff strongly unique if

$$r(M) := \inf\{r(x): x \in X\} > 0.$$

Note that r(M) is the largest number so that

$$\|x - m\| \ge d(x, M) + r(M) d(m, P_M(x))$$
(3.1)

for each $x \in X$ and $m \in M$. Moreover, if r(M) = 1, then r(x) = 1 for all $x \in X$.

EXAMPLE 5. [There is a proximinal subspace M which is not Chebyshev so that P_M is uniformly Hausdorff strongly unique.] Let $M = \text{span}\{(1, 0)\}$ be a subspace of $X = \mathbb{R}^2$ with the norm: $||x|| = ||(x_1, x_2)|| = \max\{|x_1|, |x_2|\}$. Then M is proximinal (not Chebyshev) and P_M is uniformly Hausdorff strongly unique with r(M) = 1. Clearly for each $x = (x_1, x_2) \in X$,

$$P_M(x) = \{(\alpha, 0): \alpha \in [x_1 - |x_2|, x_1 + |x_2|]\}$$

and $d(x, M) = |x_2|$.

Now we want to prove that P_M is uniformly Hausdorff strongly unique with r(M) = 1. Let $x = (x_1, x_2) \in X$ and $m = (a, 0) \in M$ be fixed. Then $||x - m|| = \max\{|x_1 - a|, |x_2|\}$.

If $||x - m|| = |x_2|$, then $m \in P_M(x)$ so $d(m, P_M(x)) = 0$ and $d(x, M) = |x_2|$. Thus $||x - m|| = d(x, M) + d(m, P_M(x))$.

If $||x-m|| = |x_1-a|$, then $m \notin P_M(x)$, so either $a > x_1 + |x_2|$ or $a < x_1 - |x_2|$. If $a > x_1 + |x_2|$, then $d(m, P_M(x)) = a - x_1 - |x_2|$, so $d(x, M) + d(m, P_M(x)) = |x_2| + a - x_1 - |x_2| = a - x_1 = ||x - m||$. If $a < x_1 - |x_2|$, then $d(m, P_M(x)) = x_1 - |x_2| - a$, so $d(x, M) + d(m, P_M(x)) = |x_2| + x_1 - |x_2| - a = x_1 - a = ||x - m||$.

Therefore for each $x \in X$, $||x - m|| = d(x, M) + d(m, P_M(x))$ for any $m \in M$, Thus P_M is uniformly Hausdorff strongly unique with r(M) = 1.

As an immediate consequence of Theorem 3, we obtain

COROLLARY 6. Let M be a proximinal subspace of a normed linear space X and 0 < r. The following statements are equivalent.

- (1) P_M is uniformly Hausdorff strongly unique with $r \leq r(M)$;
- (2) For each $x \in X$,

$$P^{\varepsilon}_{M}(x) \subset P_{M}(x)_{\varepsilon/r}$$

for each $\varepsilon \ge 0$.

When M is proximinal in X, P_M is uniformly Hausdorff strongly unique for P_M with r(M) = 1 is equivalent to what G. Godini [5] called property (*) of M.

DEFINITION 7 [5]. A subspace M of a normed linear space X has property (*) in X if for each $x \in X$ with $P_M(x) \neq \emptyset$ and each $m \in M$ we have that

$$d(m, P_M(x)) = ||x - m|| - d(x, M).$$
(7.1)

DEFINITION 8 [11]. A subspace M of a normed linear space X has the $1\frac{1}{2}$ -ball property in X if the conditions $m \in M$, $x \in X$, $r_i \ge 0$ (i=1, 2), $M \cap B(x, r_2) \neq \emptyset$, and $||x - m|| < r_1 + r_2$ imply that

$$M \cap B(m, r_1) \cap B(x, r_2) \neq \emptyset.$$

THEOREM 9. Let M be a proximinal subspace of a normed linear space X. The following statements are equivalent.

- (1) P_M is uniformly Hausdorff strongly unique with r(M) = 1;
- (2) M has property (*) in X;
- (3) For each $x \in X$.

$$P^{\varepsilon}_{M}(x) = P_{M}(x)_{\varepsilon} \cap M$$

for any $\varepsilon \geq 0$;

(4) M has the $1\frac{1}{2}$ -ball property in X.

Proof. The equivalence of statements (2), (3), and (4) was proven by G. Godini [5].

(1) \Leftrightarrow (2) Clearly, P_M is uniformly Hausdorff strongly unique with r(M) = 1 if and only if r(x) = 1 for each $x \in X$. By (4) of Lemma 2, this is equivalent to M having property (*).

Recall [8] that a subspace M is a "semi-L-summand" in X if M is Chebyshev and for each $x \in X$

$$||x|| = ||P_{\mathcal{M}}(x)|| + ||x - P_{\mathcal{M}}(x)||.$$

COROLLARY 10. If M is a semi-L-summand in X, then P_M is uniformly Hausdorff strongly unique with r(M) = 1.

Proof. Since P_M is "additive modulo M" (i.e., $P_M(x+m) = P_M(x) + m$ for each $x \in X$ and $m \in M$), by replacing x by x - m in the definition of semi-L-summand we obtain that

$$\|x - m\| = \|P_M(x - m)\| + \|x - m - P_M(x - m)\|$$

= $\|P_M(x) - m\| + \|x - P_M(x)\|$
= $d(m, P_M(x)) + d(x, M)$

for each $m \in M$. Thus M has property (*). By Theorem 9, the result follows.

Remark. By Theorem 9, the $1\frac{1}{2}$ -ball property implies uniformly Hausdorff strongly unique. But the converse is not true in general.

EXAMPLE 11. [There is a subspace M for which P_M is uniformly Hausdorff strongly unique with 0 < r(M) < 1 but M fails the $1\frac{1}{2}$ -ball property.] In C[0, 1], let 0 < r < 1 and $M = \operatorname{span}\{m\}$ where

$$m_0(t) = (r-1)t+1$$

for any $t \in [0, 1]$ and 0 < r < 1. Clearly $||m_0|| = 1$. Then *M* is a Chebyshev subspace of C[0, 1]. Fix any $f \in C[0, 1]$. By the alternation theorem, there exist $t_0, t_1 \in [0, 1]$ such that

$$f(t_0) - \alpha_f m_0(t_0) = \|f - \alpha_f m_0\|$$

$$f(t_1) - \alpha_f m_0(t_1) = -\|f - \alpha_f m_0\|$$

or

$$f(t_0) - \alpha_f m_0(t_0) = - \|f - \alpha_f m_0\|$$

$$f(t_1) - \alpha_f m_0(t_1) = \|f - \alpha_f m_0\|,$$

where $P_M(f) = \{\alpha_f m_0\}$. We may assume

$$f(t_0) - \alpha_f m_0(t_0) = \|f - \alpha_f m_0\|$$

$$f(t_1) - \alpha_f m_0(t_1) = -\|f - \alpha_f m_0\|.$$

Note that $r = \min\{|m_0(t)|: t \in [0, 1]\}$. Let $\alpha m_0 \in M$ be given. If $\alpha_f \ge \alpha$, then

$$\|f - \alpha m_0\| = \|f - \alpha_f m_0 + (\alpha_f - \alpha) m_0\|$$

$$\geq |f(t_0) - \alpha_f m_0(t_0) + (\alpha_f - \alpha) m_0(t_0)|$$

$$\geq \|f - \alpha_f m_0\| + |\alpha_f - \alpha| \min_{0 \le t \le 1} |m_0(t)|$$

$$= \|f - \alpha_f m_0\| + \frac{r}{\|m_0\|} \|\alpha_f m_0 - \alpha m_0\|.$$

If $\alpha_f < \alpha$, then

$$\begin{split} \|f - \alpha m_0\| &= \|f - \alpha_f m_0 + (\alpha_f - \alpha) m_0\| \\ &\geq |f(t_1) - \alpha_f m_0(t_1) + (\alpha_f - \alpha) m_0(t_1)| \\ &\geq \|f - \alpha_f m_0\| + |\alpha_f - \alpha| \min_{0 \le t \le 1} |m_0(t)| \\ &= \|f - \alpha_f m_0\| + \frac{r}{\|m_0\|} \|\alpha_f m_0 - \alpha m_0\|. \end{split}$$

Since $||m_0|| = 1$ and $P_M(f) = \{\alpha_f m_0\},\$

$$||f - m|| \ge d(f, M) + rd(m, P_M(f))$$

for any $m \in M$. Since f was arbitrary, P_M is uniformly Hausdorff strongly unique and $r \leq r(M)$. Now we want to prove that r is the largest number and hence r = r(M). Define f(t) = (1 + r)/2 for any $t \in [0, 1]$. Then

$$\left\| f - \frac{1}{2}m_0 \right\| = \max\left\{ \left| \frac{1+r}{2} - \frac{1}{2} \right|, \left| \frac{1+r}{2} - \frac{r}{2} \right| \right\} = \frac{1}{2}$$

since $P_M(f) = \{m_0\}$. Thus

$$||f - \frac{1}{2}m_0|| = d(f, M) + rd(\frac{1}{2}m_0, P_M(f)).$$

Therefore r is the largest number. We have shown that P_M is uniform Hausdorff strongly unique with 0 < r(M) < 1. But in [10] we observed that the only finite-dimensional subspace of C[0, 1] which has the $1\frac{1}{2}$ -ball property is $M_1 = \text{span}\{1\}$. Thus M fails the $1\frac{1}{2}$ -ball property.

Thus, in general, uniformly Hausdorff strongly unique does not imply the $1\frac{1}{2}$ -ball property. So uniform Hausdorff strong uniqueness is strictly weaker than the $1\frac{1}{2}$ -ball property. But we still have the following property: If P_M is uniformly Hausdorff strongly unique, then P_M is Lipschitz continuous. Let X be a normed linear space and H(X) denote the family of all nonempty closed, bounded, convex subsets of X.

Define $h: H(X) \times H(X) \to \mathbb{R}$ by

$$h(A, B) = \sup_{a \in A} d(a, B),$$

where $d(a, B) = \inf_{b \in B} ||a - b||$. The Hausdorff metric on H(X) is defined by

$$H(A, B) = \max\{h(A, B), h(B, A)\}.$$

Recall that P_M is *pointwise Lipschitz u.H.s.c.* at x_0 if there exists $\lambda_{x_0} > 0$ such that for each $x \in X$,

$$h(P_M(x), P_M(x_0)) \leq \lambda_{x_0} ||x - x_0||.$$

THEOREM 12. Let M be a subspace of a normed linear space X. If $P_M(x)$ is Hausdorff strongly unique, then P_M is pointwise Lipschitz u.H.s.c. at x with constant 2/r(x).

Proof. Suppose that $||x - m|| \ge d(x, M) + r(x) d(m, P_M(x))$ for any $m \in M$, Let $y \in X$ and $m \in P_M(y)$ be given. Then

$$\begin{aligned} r(x) \ d(m, \ P_M(x)) &\leq \|x - m\| - d(x, \ M) \\ &\leq \|x - y\| + \|y - m\| - d(x, \ M) \\ &= \|x - y\| + d(y, \ M) - d(x, \ M) \\ &\leq 2 \|x - y\|. \end{aligned}$$

Thus $h(P_M(y), P_M(x)) \leq (2/r(x)) ||x - y||$. Therefore P_M is pointwise Lipschitz u.H.s.c. at x with constant 2/r(x).

DEFINITION 13. Let M be a proximinal subspace of a normed linear space X. P_M is said to be Lipschitz continuous with constant λ if

$$H(P_M(x), P_M(y)) \leq \lambda \|x - y\|$$

for any $x, y \in X$.

THEOREM 14. Let M be a proximinal subspace of X. If P_M is uniformly Hausdorff strongly unique, then P_M is Lipschitz continuous with Lipschitz constant 2/r(M).

Proof. Let r = r(M). Since P_M is uniformly strongly unique, for each $x \in X$ and $m \in M$.

$$\|x-m\| \ge d(x, M) + rd(m, P_M(x)).$$

Let x, $y \in X$ and $m \in P_{\mathcal{M}}(y)$. Then

$$rd(m, P_{M}(x)) \leq ||x - m|| - d(x, M)$$

$$\leq ||x - y|| + ||y - m|| - d(x, M)$$

$$= ||x - y|| + d(y, M) - d(x, M)$$

$$\leq 2 ||x - y||.$$

Thus $d(m, P_M(x)) \leq (2/r) ||x - y||$. Since *m* was arbitrary in $P_M(y)$, $h(P_M(y), M_M(x)) \leq (2/r) ||x - y||$. By symmetry, $h(P_M(x), P_M(y)) \leq (2/r) ||x - y||$. Therefore $H(P_M(x), P_M(Y)) \leq (2/r) ||x - y||$, and P_M is Lipschitz continuous with Lipschitz constant 2/r.

THEOREM 15. Let M be a finite-dimensional subspace of C[a, b]. The following statements are equivalent.

- (1) P_M is uniformly Hausdorff strongly unique;
- (2) *M* is one dimensional and Chebyshev.

Proof. (1) \Rightarrow (2) Suppose (1) holds. By Theorem 14, P_M is Lipschitz continuous. Since [a, b] is a connected compact Hausdorff space, M is Chebyshev [2]. By a result of Cline [3], M is one dimensional. Thus (2) holds.

 $(2) \Rightarrow (1)$ Suppose *M* is one dimensional and Chebyshev. Then there exists $x_1 \in C[a, b]$ such that x_1 has no zero and $M = \text{span}\{x_1\}$. By the same argument to Example 11, we can prove that P_M is uniformly Hausdorff strongly unique.

Remark. In C(T), where T is a connected compact Hausdorff space, the above theorem is also true. In fact, $(1) \Rightarrow (2)$ is the same proof as the above and by a Theorem in [9] and the same argument to Example 11, $(2) \Rightarrow (1)$. $(2) \Rightarrow (1)$ also follows from the result of Wu Li [7].

In general, the converse of Theorem 14 is not true. We have an example.

EXAMPLE 16. $[P_M \text{ is Lipschitz continuous, but } P_M \text{ is not uniformly}$ Hausdorff strongly unique.] Let $X = \mathbb{R}^2$ have the norm

$$||x|| = ||(x(1), x(2))|| = \{|x(1)|^2 + |x(2)|^2\}^{1/2}$$

Let $M = \text{span}\{(1, 0)\}$. Then clearly M is Chebyshev and P_M is Lipschitz continuous, i.e., $||P_M(x) - P_M(y)|| \le ||x - y||$. Suppose that P_M is uniformly Hausdorff strongly unique and let r = r(M). Let x = (0, 1) so $P_M(x) = (0, 0)$ and d(x, M) = 1. If r = 1, let m = (1, 0). Then

$$d(x, M) + rd(m, P_M(x)) = 2 > ||x - m||$$

which contradicts uniform Hausdorff strong uniqueness. If 0 < r < 1, let $\alpha = r/(1 - r^2)$ and $m = (\alpha, 0)$. Then

$$d(x, M) + rd(m, P_M(x)) = 1 + r\sqrt{1 + \alpha^2} < \sqrt{1 + \alpha^2} = ||x - m||$$

which also contradicts uniform Hausdorff strong uniqueness. Thus P_M is not uniformly Hausdorff strongly unique.

COROLLARY 17 [11]. Let M be a proximinal subspace of a Banach space X. If M has the $1\frac{1}{2}$ -ball property in X, then P_M is Lipschitz continuous with Lipschitz constant 2.

Proof. By Theorem 9, P_M is uniformly Hausdorff strongly unique with r(M) = 1. The result now follows by Theorem 14.

THEOREM 18 [4]. Let M be a finite-dimensional subspace of X. If P_M is Lipschitz continuous, then P_M has a Lipschitz continuous selection which is homogeneous and additive modulo M.

COROLLARY 19. Let M be an n-dimensional subspace of X. If P_M is uniformly Hausdorff strongly unique, then P_M has a Lipschitz continuous selection which is homogeneous and additive modulo M. Moreover, if M has the $1\frac{1}{2}$ -ball property in X, then P_M has a Lipschitz continuous selection which is homogeneous and additive modulo M.

Proof. If M has the $1\frac{1}{2}$ -ball property, then by Theorem 9, P_M is uniformly Hausdorff strongly unique. By Theorem 14, such maps are Lipschitz continuous. The result now follows by Theorem 18.

Remark. M. W. Bartelt and H. W. McLaughlin [1] proved that if the best approximation to x from M is strongly unique, then so is the best approximation to every element of span $\{M, x\}$. This result can be generalized.

THEOREM 20. Let M be a subspace of X and $x \in X \setminus M$. If $P_M(x)$ is Hausdorff strongly unique, then P_M is uniformly Hausdorff strongly unique in span $\{M, x\}$.

Proof. Suppose $P_M(x)$ is Hausdorff strongly unique, i.e., there exists r > 0 such that $||x - m|| \ge d(x, M) + rd(m, P_M(x))$ for any $m \in M$. The case $M = \{0\}$ is trivial. Assume that $M \ne \{0\}$. It suffices to show that for any scalar a and $m_0 \in M$,

 $||(ax+m_0)-m|| \ge d(ax+m_0, M) + rd(m, P_M(ax+m_0))$

for any $m \in M$. Let $ax + m_0 \in \text{span}\{M, x\}$. If a = 0, it is obvious. If $a \neq 0$, then for all $m \in M$,

$$\begin{aligned} \|ax + m_0 - m\| &= |a| \left\| x - \frac{1}{a} (m - m_0) \right\| \\ &\geq |a| \left\{ d(x, M) + rd \left(\frac{1}{a} (m - m_0), P_M(x) \right) \right\} \\ &= d(ax + m_0, M) + rd(m - m_0, P_M(ax)) \\ &= d(ax + m_0, M) + rd(m, P_M(ax + m_0)). \end{aligned}$$

Since $ax + m_0$ was arbitrary in span $\{M, x\}$, P_M is uniformly Hausdorff strongly unique.

COROLLARY 21. Let M be a hyperplane in X.

The following statements are equivalent.

(1) There exists $x \in X \setminus M$ such that $P_M(x)$ is Hausdorff strongly unique;

(2) P_M is uniformly Hausdorff strongly unique in X.

Proof. $(2) \Rightarrow (1)$ is obvious.

(2) \Rightarrow (1) Suppose that (1) holds. By Theorem 20, P_M is uniformly Hausdorff strongly unique in span $\{M, x\}$. Since span $\{M, x\} = X$, P_M is uniformly Hausdorff strongly unique in X.

ACKNOWLEDGMENTS

The author thanks his advisor Dr. Frank R. Deutsch for his valuable advice and encouragement during the course of this study.

REFERENCES

- 1. M. W. BARTELT AND H. W. MCLAUGHLIN, Characterizations of strong unicity in approximation theory, J. Approx. Theory 9 (1973), 255–266.
- J. BLATTER, P. D. MORRIS, AND D. E. WULBERT, Continuity of the set-valued metric propjection, Math. Ann. 178 (1968), 12-24.
- 3. A. K. CLINE, Lipschitz conditions on uniform approximation operators, J. Approx. Theory 8 (1973), 160–172.
- 4. F. R. DEUTSCH, WU L, AND S. H. PARK, Chearacterization of continuous and Lipschitz continuous metric selections in normed linear spaces, preprint, 1987.

- 5. G. GODINI, Best approximation and intersections of balls, "Banach space theory and its applications" (A. Pietsch, N. Popa, and I. Singer, Eds.), Lecture Notes in Mathematics, Vol. 991, Springer-Verlag, New York/Berlin, 1983.
- 6. WU LI, Strong uniqueness and Lipschitz continuity of metric projection, a generalization of classical Haar theory, J. Approx. Theory 56 (1989), 164-184.
- 7. WU LI, Lipschitz continuous metric selections in $C_0(T)$, preprint, 1987.
- A. LIMA, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1-62.
- 9. G. G. LORENTZ, "Approximation of Functions," 2nd ed., Chelsea, New York, 1986.
- S. H. PARK, A relationship between the 1¹/₂-ball property and the strong 1¹/₂-ball property, J. Approx. Theory 57 (1989), 332-346.
- D. YOST, Best approximation and intersections of balls in Banach spaces, Bull. Austral. Math. Soc. 20 (1979), 285-300.